Neural Attribute Machines for Program Generation

نویسندگان

  • Matthew Amodio
  • Swarat Chaudhuri
  • Thomas W. Reps
چکیده

Recurrent neural networks have achieved remarkable success at generating sequences with complex structures, thanks to advances that include richer embeddings of input and cures for vanishing gradients. Trained only on sequences from a known grammar, though, they can still struggle to learn rules and constraints of the grammar. Neural Attribute Machines (NAMs) are equipped with a logical machine that represents the underlying grammar, which is used to teach the constraints to the neural machine by (i) augmenting the input sequence, and (ii) optimizing a custom loss function. Unlike traditional RNNs, NAMs are exposed to the grammar, as well as samples from the language of the grammar. During generation, NAMs make significantly fewer violations of the constraints of the underlying grammar than RNNs trained only on samples from the language of the grammar.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An artificial Neural Network approach to monitor and diagnose multi-attribute quality control processes

One of the existing problems of multi-attribute process monitoring is the occurrence of high number of false alarms (Type I error). Another problem is an increase in the probability of not detecting defects when the process is monitored by a set of independent uni-attribute control charts. In this paper, we address both of these problems and consider monitoring correlated multi-attributes proce...

متن کامل

Online Monitoring and Fault Diagnosis of Multivariate-attribute Process Mean Using Neural Networks and Discriminant Analysis Technique

In some statistical process control applications, the process data are not Normally distributed and characterized by the combination of both variable and attributes quality characteristics. Despite different methods which are proposed separately for monitoring multivariate and multi-attribute processes, only few methods are available in the literature for monitoring multivariate-attribute proce...

متن کامل

Performance evaluation of chain saw machines for dimensional stones using feasibility of neural network models

Prediction of the production rate of the cutting dimensional stone process is crucial, especially when chain saw machines are used. The cutting dimensional rock process is generally a complex issue with numerous effective factors including variable and unreliable conditions of the rocks and cutting machines. The Group Method of Data Handling (GMDH) type of neural network and Radial Basis Functi...

متن کامل

Network Generating Attribute Grammar Encoding

The development and theoretical analysis of neural network architectures may be improved with the availability of techniques which allow the systematic representation and generation of classes of architectures. Recent work on the genetic optimization of neural networks has led to new ideas on how to encode neural network architectures abstractly as grammars. Extending this approach, we have dev...

متن کامل

Step change point estimation in the multivariate-attribute process variability using artificial neural networks and maximum likelihood estimation

In some statistical process control applications, the combination of both variable and attribute quality characteristics which are correlated represents the quality of the product or the process. In such processes, identification the time of manifesting the out-of-control states can help the quality engineers to eliminate the assignable causes through proper corrective actions. In this paper, f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1705.09231  شماره 

صفحات  -

تاریخ انتشار 2017